Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; : OF1-OF11, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38568775

RESUMO

Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.

2.
Curr Protoc ; 3(8): e858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37561726

RESUMO

One of the most sought-after topics in neuroscience is to understand how the environment regulates the activity and function of neural circuitry and subsequently influences relevant behaviors. In response to alterations in the environment, the neural circuits undergo adaptive changes ranging from gene expression changes to altered cellular function. Performing sequencing of the transcriptome involved in these behavior-related circuits will provide clues to accurately dissect the detailed mechanisms of related behavior. Here, we describe methods for marking and collecting the ventral hippocampus-projecting basolateral amygdala neurons, which have been repeatedly implicated in regulation of anxiety-like behavior, and subsequently constructing a library ready for sequencing. Specifically, the reported approaches include adeno-associated virus injection, acute brain slice isolation, cell suspension preparation, cell extraction, and cDNA library construction. By utilizing the techniques described here, researchers can comprehensively investigate the transcriptional levels of neural clusters embedded in particular circuits and discover potential pathogenic and therapeutic targets for behavior-relevant disorders. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Tagging of behavior-related neural circuits Basic Protocol 2: Isolation and capture of fluorescent-positive cells Basic Protocol 3: Foundation of sequencing library.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Neurônios/fisiologia , Ansiedade , Análise de Sequência de RNA
3.
Cell Death Dis ; 12(4): 403, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854034

RESUMO

The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1-LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


Assuntos
Quinases Lim/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Coluna Vertebral/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Camundongos , Neuregulina-1/genética , Plasticidade Neuronal/fisiologia , Receptor ErbB-4/metabolismo , Coluna Vertebral/patologia , Sinapses/metabolismo
4.
Sheng Li Xue Bao ; 72(2): 235-242, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32328617

RESUMO

Gliomas are malignant tumors with strong invasiveness. The current treatment strategy is surgical treatment assisted by a variety of radiotherapies, chemotherapies and immunotherapies. However, the curative efficacy is limited. Adrenergic receptor (AR) is an important stress hormone receptor, which is highly involved in the regulation of the tumorigenesis and progression of various tumors by activating different downstream signal transduction pathways. Recent studies have shown that AR is dysregulated in glioma cells and tissues, and plays an important role in a series of biological behaviors such as tumorigenesis, invasion and metastasis of glioma. This article reviews the research progress of AR in the field of glioma in recent years, which provides a theoretical basis for the prevention and treatment of glioma targeting the AR.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Receptores Adrenérgicos/fisiologia , Transdução de Sinais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Metástase Neoplásica
5.
Biol Psychiatry ; 85(10): 812-828, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737013

RESUMO

BACKGROUND: The role of the amygdala in mediating stress coping has been long appreciated. However, basolateral amygdala (BLA) projection neurons (PNs) are organized into discrete output circuits, and it remains unclear whether stress differentially impacts these circuits. METHODS: Mice were exposed to acute restraint stress or chronic restraint stress (CRS), and c-fos expression was measured as a proxy for neuronal activation in Retrobead retrogradely labeled dorsomedial prefrontal cortex-targeting PNs (BLA→dmPFC) and non-dmPFC-targeting PNs (BLA↛dmPFC). Next, the effects of CRS on neuronal firing and membrane potassium channel current were examined via ex vivo electrophysiology in these neuronal populations and correlated with anxiety-like behavior, as measured in the elevated plus maze and novel open field tests. Lastly, the ability of virus-mediated overexpression of subtype 2 of small-conductance, calcium-activated potassium (SK2) channel in BLA↛dmPFC PNs to negate the anxiety-related effects of CRS was assessed. RESULTS: BLA→dmPFC PNs were transiently activated after CRS, whereas BLA↛dmPFC showed sustained c-fos expression and augmented firing to external input. CRS led to a loss of SK2 channel-mediated currents in BLA↛dmPFC PNs, which correlated with heightened anxiety-like behavior. Virus-mediated maintenance of SK2 channel currents in BLA↛dmPFC PNs prevented CRS-induced anxiety-like behavior. Finally, CRS produced persistent activation of BLA PNs targeting the ventral hippocampus, and virally overexpressing SK2 channels in this projection population were sufficient to prevent CRS-induced anxiety-like behavior. CONCLUSIONS: The current data reveal that chronic stress produces projection-specific functional adaptations in BLA PNs. These findings offer new insight into the neural circuits that contribute to stress-induced psychopathology.


Assuntos
Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Regulação para Baixo , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Restrição Física , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(51): 13105-13110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498032

RESUMO

Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.


Assuntos
Comportamento Animal , Encéfalo/patologia , Interneurônios/patologia , Neuregulina-1/metabolismo , Receptor ErbB-4/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
7.
Am J Pathol ; 188(4): 1043-1058, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29353058

RESUMO

Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome is a congenital disorder affecting multiple organs and mainly caused by mutations in CHD7, a gene encoding a chromatin-remodeling protein. Immunodeficiency and reduced T cells have been noted in CHARGE syndrome. However, the mechanisms underlying T lymphopenia are largely unexplored. Herein, we observed dramatic decrease of T cells in both chd7knockdown and knockout zebrafish embryos. Unexpectedly, hematopoietic stem and progenitor cells and, particularly, lymphoid progenitor cells were increased peripherally in nonthymic areas in chd7-deficient embryos, unlikely to contribute to the T-cell decrease. Further analysis demonstrated that both the organogenesis and homing function of the thymus were seriously impaired. Chd7 might regulate thymus organogenesis through modulating the development of both neural crest cell-derived mesenchyme and pharyngeal endoderm-derived thymic epithelial cells. The expression of foxn1, a central regulator of thymic epithelium, was remarkably down-regulated in the pharyngeal region in chd7-deficient embryos. Moreover, the T-cell reduction in chd7-deficient embryos was partially rescued by overexpressing foxn1, suggesting that restoring thymic epithelium may be a potential therapeutic strategy for treating immunodeficiency in CHARGE syndrome. Collectively, the results indicated that chd7 was critical for thymic development and T-lymphopenia in CHARGE syndrome may be mainly attributed to the defects of thymic organogenesis. The current finding may benefit the diagnosis and therapy of T lymphopenia and immunodeficiency in CHARGE syndrome.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Organogênese , Linfócitos T/citologia , Timo/citologia , Timo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Região Branquial/efeitos dos fármacos , Região Branquial/embriologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , DNA Helicases/deficiência , Proteínas de Ligação a DNA/deficiência , Embrião não Mamífero/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Morfolinos/farmacologia , Mutação/genética , Crista Neural/patologia , Fenótipo , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
8.
Mol Neurobiol ; 54(6): 4524-4536, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27364615

RESUMO

During early development, continuous exposure to environmental contaminants such as bisphenol A (BPA) is known to alter neuronal development, resulting in aberrant brain structure and predisposing individuals to developing neuropsychiatric disorders later in life. While the altered oligodendrocyte (OL) structure and function have been casually linked to the occurrence of numerous psychiatric diseases, it remains open whether early BPA exposure (EBE) also recruits OLs to mediate its toxicity in the brain. Here, we observed that EBE from birth to postnatal day 21 caused a substantial loss of hippocampal OLs in rat pups. The OL loss was enduring and manifested even when the affected pups spanned into their adulthood. In parallel, the expression of two key proteins in mature OLs, myelin basic protein (MBP), and monocarboxylate transporter 1 (MCT1) was markedly downregulated in adult hippocampus with a considerable reduction in the number of myelinated axons. By contrast, the myelination of individual axons remained intact. The altered hippocampal OLs were related to EBE-mediated disruption of estrogen receptor (ER) signaling in developing OLs and could be readily prevented by treatment with low level of ICI 182780, an ER antagonist. Importantly, the adult rats subject to EBE exhibited clear deficit in contextual fear memory, which highly correlated with OL loss and decreased MBP and MCT1 expression in hippocampus. The OL loss may thus represent an alternative route through which EBE has its adversity on the brain and contributes to the development of neuropsychiatric illness.


Assuntos
Envelhecimento/patologia , Compostos Benzidrílicos/toxicidade , Exposição Ambiental , Medo , Hipocampo/patologia , Aprendizagem , Oligodendroglia/patologia , Fenóis/toxicidade , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Contagem de Células , Feminino , Hipocampo/ultraestrutura , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteína Básica da Mielina , Bainha de Mielina/metabolismo , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Simportadores/metabolismo
9.
Hippocampus ; 24(12): 1570-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25074486

RESUMO

Bisphenol A (BPA), one of the most common environmental endocrine disruptors, has been recognized to have wide adverse effects on the brain development and behavior. These adversities are related to its ability to bind estrogen receptor (ER) with subsequent alteration of its expression in the target areas. However, very little is known about whether BPA exposure also affects ER phosphorylation and its translocation to nucleus during postnatal development, two critical steps for its function. Here, we found that during development from postnatal day 7 (P7) to P21, the alpha subtype of ER (ERα) in the hippocampus of male rats experienced remarkable alterations in terms of its expression, phosphorylation and translocation to nucleus. Exposure to low level of BPA had bidirectional, development-dependent effects on the expression of ERα mRNA and protein, but decreased ERα phosphorylation and impaired its translocation to nucleus throughout the period investigated. Treatment with low dose of ICI 182,780 (ICI), an ER antagonist to block the binding of ER with BPA, reversed the altered ERα following BPA exposure, highlighting critical involvement of ER. Moreover, ICI treatment rescued the hippocampus-dependent behavioral deficits in the adult rats experiencing early-life BPA exposure. Overall, our results indicate that BPA interferes with the ERα signaling in the developing hippocampus in an ER-dependent manner, which may underlie its adverse behavioral and cognitive outcomes in adult animals.


Assuntos
Compostos Benzidrílicos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto , Hipocampo/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Fosforilação , Gravidez , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
10.
Neurosci Lett ; 379(1): 27-31, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15814193

RESUMO

This study investigated whether adenosine A1 receptors could modulate respiratory rhythm in mammals. Experiments were performed in in vitro brainstem slice preparations from neonatal rats. These preparations included the medial region of Nucleus Retrofacialis (mNRF) with the hypoglossal nerve (XII nerve) rootlets retained. The rhythmical discharges of the biphasic expiratory (biphasic E) neurons/inspiratory neurons (I neurons) and activities of the XII nerve rootlets were simultaneously recorded by using extracellular microelectrodes and suction electrodes, respectively. Roles of adenosine A1 receptors in modulation of respiratory rhythm were investigated by administration of the adenosine A1 receptor agonist R-phenylisopropyl-adenosine (R-PIA, 10 microM) and its specific antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 microM). DPCPX decreased the respiratory period (27.19%) and expiratory duration (28.27%) of biphasic E neurons and at the same time increased the peak discharge frequency (48.13%). By contrast, R-PIA produced opposite effects. On the other hand, the effects of DPCPX and R-PIA on the I neurons were similar to that on the biphasic E neurons except that R-PIA shortened the discharge duration of I neurons (34.12%) and decreased the peak discharge frequency (37.75%) in the middle phase of inspiration, but not in the initial and terminal phases. These results suggest that adenosine A1 receptors are involved in the phase-switching between expiration and inspiration by affecting biphasic E neurons. Activation of adenosine A1 receptors may modulate the inhibitory synaptic inputs from I neurons to biphasic E neurons.


Assuntos
Adenosina/análogos & derivados , Tronco Encefálico/citologia , Expiração/fisiologia , Neurônios/fisiologia , Receptor A1 de Adenosina/fisiologia , Mecânica Respiratória , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Animais , Animais Recém-Nascidos , Tronco Encefálico/crescimento & desenvolvimento , Expiração/efeitos dos fármacos , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Fatores de Tempo , Xantinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA